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Abstract

Higher-order spectra appear often in the analysis and identification of nonlinear systems. The auto-bispectral density is
one example of a higher-order spectrum and may be used in the analysis of stationary structural response data to detect the
presence of certain types of structural nonlinearities. In this work a closed-form expression for the auto-bispectral density,
derived previously by the authors, is used to find the bispectral frequency most sensitive to the nonlinearity. The properties
of nonlinearity detectors based on estimates of the magnitude of the auto-bispectral density at this frequency are then
explored. Estimates of the auto-bispectral density are obtained using the direct method based on the discrete Fourier
transform. The bias associated with this estimator is derived here and combined with previously derived expressions for the
estimator variance to give both Type-I and Type-II errors for the detector. Detector performance is quantified using a
receiver operating characteristic (ROC) curve illustrating the trade-off between false positives (Type-I error) and power of
detection (1.0-Type-II error). Theoretically derived ROC curves are compared to those obtained via numerical simulation
and show excellent agreement. Results are presented for different levels of nonlinearity in both the stiffness and damping
terms for a spring-mass system. Possible consequences are discussed with regard to the detection of damage-induced
nonlinearities in structures.

Published by Elsevier Ltd.

1. Introduction

This work is concerned with detecting the presence of certain kinds of nonlinearity in structural systems.
Specifically, nonlinearity detectors based on estimates of the auto-bispectral density obtained from time series
of structural response data are considered. The auto-bispectral density for a stationary system response is
defined as the double Fourier transform (FT) of the third moment about the mean [1], i.e.

B(wr,w2) = / / EIO(0) — DO+ 1) — PO+ 12) — Ple @750 de dy, (1)

where y(#) is the signal and j is the signal mean. The distinction is sometimes not made between the terms
“auto-bispectrum” and “‘auto-bispectral density”. Eq. (1) is in fact a density with units [y]* /Hz> and will be
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referred to as such throughout. The expected value under the integral will only be a function of the delays 7y, 72
due to the assumption of ergodicity. For a linear Gaussian-excited structure this quantity is zero for all
frequency pairs w;, ®,. This can be seen as follows. Assume a linear, time invariant system driven with zero-
mean Gaussian noise x(¢). Its input—output relationship is governed by the convolution

y(t) = /_ h(t)x(t — t)dt 2)

[ee]

and the statistical moments of the output are given by E[y(2)] = E[x(?)] = 0 followed by

ED(y(r+ )] = / / (it = 0t + 11 — 02) ED(01)x(02)] 40, d0s,

ED(O(t+ 1)t + 12)] = / / / it — 00t + 11 — 02)h(t + ©2 — 03)
% E[x(0,)x(0:)x(03)] 6, d6 dos

(€)

Because the excitation is Gaussian all odd-order moments vanish, e.g. E[x(0;)x(62)x(03)] = 0, while the even
order expectations become functions of the autocovariance E[x(01)x(6,)] [2]. As a consequence the statistical
properties of the output for a linear, Gaussian driven system can be described entirely by E[y()y(t + 11)] (e.g.
E[y(t)y(t + t1)y(t + 12)] = 0). However, if quadratic nonlinearities are present, Eq. (2) does not hold and there
will exist non-zero components in the third moment, i.e. E[y(¢#)y(¢ + t1)y(¢ + 12)]#0. The presence of this
expected value can therefore be used to infer the presence of the nonlinearity. The existence of other higher-
order moments can also be used to detect nonlinearity for Gaussian driven linear structures. The frequency
domain representations of these moments are collectively the higher-order spectra. The first of these, the auto-
bispectral density has already been given by Eq. (1) and is the focus of this work. Even if the excitation, x(z), is
non-Gaussian a normalized form of Eq. (1), the bicoherence, can be used to detect the presence of a
nonlinearity [3]. In this case the practitioner is trying to detect deviations from a constant bicoherence as
opposed to non-zero values as is done with the auto-bispectral density.

The magnitude of the auto-bispectrum has seen use as a nonlinearity detector in a number of applications.
Worden and Tomlinson [4] used estimates of the auto-bispectrum to detect different types of nonlinearity in a
spring—mass system. Messina and Vittal [5] used estimates of the auto-bispectrum to detect nonlinear mode
interaction in a power system. In some cases structural damage will result in the presence of a nonlinearity.
Rivola and White [6] used the normalized auto-bispectrum to detect cracks in an experimental beam while
Zhang et al. [7] focused on detecting gear faults, also using the auto-bispectrum. Both the auto-bispectrum and
auto-trispectrum were used by Teng and Brandon [8] in detecting the deterioration of jointed structures. One
question that was not addressed in the above works was that of significance. That is to say, what are the Type-
I and Type-II errors associated with a bispectral-based detector? In detecting the presence of non-Gaussian
signals in noise, Hinich and Wilson [9] specified both Type-I and Type-II error as a function of both signal-to-
noise-ratio (SNR) and the degree of non-normality (skewness). Type-I error was also discussed in the work of
Richardson and Hodgkiss [1] in detecting nonlinearity in underwater acoustic data. To date no such analysis
has been performed with regard to detecting nonlinearity in structures. However, this information is essential
in understanding the efficacy of bispectrum-based detectors in applications such as damage detection
mentioned above.

This work is focused on determining the Type-I and Type-II error for a detector of structural nonlinearity
based on estimates of the auto-bispectral density. Determination of these errors first requires an analytical
solution for the auto-bispectral density as a function of the nonlinearity parameters. Such a solution was
previously derived by the authors in Ref. [10] and is summarized in the next section. This solution is also used
to determine the frequency pair (@, ;) most sensitive to the presence of the nonlinearity. The bias associated
with the direct method of estimating the auto-bispectral density is then derived. This expression is used in
conjunction with previously established expressions for the variance of the estimator to derive the
distributions for the magnitude auto-bispectral density peak heights under the null (linear) and alternative
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(nonlinearity present) hypothesis. Probability of detection (1.0-Type-II error) and probability of false
alarm (Type-I error) can then be obtained analytically for a given nonlinearity strength. These results
are displayed as receiver operating characteristic (ROC) curves and are compared to those obtained
by simulating the nonlinear response of a spring—mass system and subsequently estimating the auto-bispectral
density.

2. Analytical auto-bispectral density via Volterra series

This section briefly reviews the development of an analytical solution for the auto-bispectral density and
shows how this solution can be used to obtain the most sensitive bi-frequency for the purposes of nonlinearity
detection. In order to describe the output response analytically a two-term Volterra series model is used [2,11]
in which the solution is approximated as

(1) = y1(0) + (1)
= / hl(‘E)X(l — ‘E) dr + / / /’lz(‘[l,fz)x(l — rl)x(l — ‘L'2) dr; dty, (4)

where /1, h, are the linear and quadratic Volterra kernels, respectively. This approach is valid for modeling a
broad class of nonlinear systems (see Ref. [2]). While more terms could have been considered in the Volterra
expansion (e.g. y;(), y4(?), etc.), the focus of this work is on establishing detection limits (i.e. relatively low
levels of nonlinearity are considered). For this application the two term model is sufficient. Consider the
excitation to be IID Gaussian noise with zero mean and unit standard deviation, i.e. x(¢)~N(0, 1). In this case
the mean of the system response is given by

J=r+pn=0 +/_ /_ hy(t1, ) E[x(t — 71)x(t — 72)]d7; d7). W)

Substituting Eqs. (4) and (5) into Eq. (1) and simplifying yields the expression [10]
B(w, m)

- % / Ha(on + & 03 — OHa(—0n — & OHy— + & — SO Sux(@1 + OSnalws — &) de

+ 2H)(—w1 — w2, w2)H (01 + w2) H1(—02)S (w1 + 02)Sx(w2)
+2Hy(—wy — wr, w1)H (01 + 02) H{(—w1)Sxx(01 + @02)Syx(1)
+ 2H (w1, w02)H1(—w1)H (= 02)Sxx(01)Sxx(@2), (6)

where Sy (w) = ffooo E[x(£)x(t — t;)le7 ™" dr; is the autospectral density function. In this work the IID
Gaussian assumption on x(7) results in S,(w) = const. = P. Expressions for the frequency domain kernels,
Hi(w) = [ hi(t)e™" dry and Hy(oy, w2) = [ 75 ho(t1, 1)e (@1 71F@212) dry dr,p, may be obtained via the
harmonic probing technique described in detail in Refs. [11,12]. These kernels will be dependent on the specific
system under study.

Define the structural model of interest to be a single degree-of-freedom system governed by

mj + c1 + c2* + kiy + kay? = Ax(), (7)

where m [kg] is the mass, ¢; [Ns/m] and k; [N/m)] the linear damping and stiffness coefficients, ¢, [Ns?/m?]
and k, [N/m?] the nonlinear damping and stiffness coefficients, and A4 [N] the amplitude of excitation. Using
the acceleration j(¢) as the response of interest, harmonic probing yields

—w?
H =
1) ki +icio — mo?

1
Hy(w1,m) = m(—kz + cxwiw)H ((w1)H ((02)H (01 + 02) (®)
103
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as the first and second-order Volterra kernels. These expressions may be substituted into Eq. (6) along with
S (w) = PIN?/Hz] to give a closed-form solution for the auto-bispectral density in terms of the physical
parameters m, k1, k»,c1,cy. The integral term of Eq. (6) may be obtained via Cauchy integration (see for
example Ref. [13]). For a Gaussian excited, linear structure H,(w;,w;) =0 (k; = ¢; = 0) and the auto-
bispectral density is identically zero over all frequency pairs. For the system studied here, the presence of a
nonlinearity in either the damping or stiffness terms will lead to non-zero values resulting in “peaks” at both
the natural frequency w, = +/ki;/m and the bi-frequency w; + w; = w,. This can be seen simply by
considering the location of the poles associated with H;(w;, ;) (see Fig. 1). Differentiating Eq. (6) with
respect to k, or ¢; shows that the peak location w; = w; = w, is clearly the most sensitive to the presence of
both stiffness and damping nonlinearities. The analytical expression is also needed in order to derive the
distributions for the magnitude auto-bispectral density peak heights. Detecting the presence of these
nonlinearities therefore requires the practitioner to monitor this frequency pair in the w, , plane and look
for significant non-zero values. In the following sections we discuss the estimation problem and the problem of
determining the significance of the magnitude auto-bispectral density peak heights.

3. Estimating the auto-bispectral density

The estimation of B(w, ;) is made with finite data and will therefore be subject to both bias and variance.
This results in non-zero values of the bispectrum even when no nonlinearity is present. Ideally, the estimator
used will be unbiased and consistent, that is to say both the bias and variance will go to zero as the number of
data points become large. The real question for detection is ““what is the smallest nonlinearity that can be
detected with a given Type-I, Type-II error given the uncertainty in the estimate?”’. Of course, other noise
sources will be present in practice and will degrade the detection performance further. By considering only the
uncertainty in the estimate, the results presented show the fundamental limitations of this detection scheme.

Two main approaches are used in bispectral density estimation. The first, referred to as the indirect method,
involves averaging over K data records to approximate the expected value E[(y(¢) — P)(y(t — t1) — P)(¥(t — 12) —
7)] and then taking the double FT. Details of this approach are discussed in Ref. [14]. The second, direct method
forms the estimate as an average product of FTs. An observed time series sampled with frequency f, = 1/4, is
denoted y(n),n = 0--- N — 1. These data are divided into K segments of length M (N = KM for non-overlapping
segments) such that the kth segment is y,(m) = y(m + kM), m=0---M — 1,k =0--- K — 1. Each segment may
then be smoothed by multiplying by an appropriate windowing function w(m). The FT of the windowed data at
discrete frequencies f is approximated by Yi(f)= 4,5, wm)y,(m)e 2#"/M_ f—=0,...,M — 1. Using this
notation, the final estimate for the auto-bispectral density is obtained by averaging over the total time KM 4, to give

2 K-1

B9 = 25 ViY@ Vil +9) )
k=0

Ho (fa.f2)
sabio

Fig. 1. Magnitude of H>(w;,®,) (dB scale) showing the location of the poles and the ridge w; + w; = w,.
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for discrete frequencies f,g. Obtaining the estimate at frequencies (w;,;) simply requires the scaling
w =27[2f — M)/2MA,), f =0--- M — 1 resulting in the estimate B(w;, w).

As the number of data increases toward infinity, the bias in the estimate approaches zero, thus Eq. (9) is an
unbiased estimate [14]. The bias in bispectral estimates is analogous to that found in power spectrum
estimation and scales as the second derivative of the auto-bispectral density with respect to the frequencies
[15]. For lightly damped systems, such as the mechanical system explored here, there will tend to be sharp
peaks such as the one displayed in Fig. 2 resulting in a potentially large bias. Accurate resolution of sharp
peaks requires a high-frequency resolution. This means that the number of points in the estimation segments
M must be large. An estimate for the bias is derived here in analogous fashion to those derived in power
spectral density estimation [16]. The expected value for the estimate may be written as the value of the
magnitude auto-bispectral density averaged over each frequency bin, i.e.

Satdy
(2Af) fa— A/

where 4y = 1/(2M 4,) is the half-frequency bin width. For small 4;, the magnitude auto-bispectral density
may be expanded as a Taylor series up to second order giving

E[|B(fl’f2)|

S1+4r
/ 1B, &) dE ey, (10)

R 5 1 Sotdr  pfi+4Ar 5 5
BB~ i [ [ B R G =) g B

Q40 Jy, 4 af

2
+(& fz)af BGf2P + (& =) fz)af 57, 1B LP
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Fig. 2. Magnitude auto-bispectral density obtained from theory (a,c) and from the direct estimation procedure (b,d). Results are
plotted for a stiffness nonlinearity of ky = 10°N/m?, with ¢; = 0N's?/m? (a,b) and damping nonlinearity of ¢; = 40 Ns?/m? with
ky = ON/m? (c,d).
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The two terms involving the first derlvatlve of the auto-bispectral density vanish as does the mixed partial
derivative owing to the fact that ff Af (¢ —f)d& = 0. Carrying out the integration for the remaining terms
results in the expression

R 2 A2 2
E[B( 1)1~ B 1 fo)F + gfg BU 1S+ o B 120 (12)
thus the bias is simply
50 52
b= 652 5 B(f 1./ ) +— 6 o2 |B(flaf2)| (13)

Using the closed-form expression for the auto-bispectral density (Eq. (6)) in combination with Eq. (13) an
expression for the bias is obtained. One point of interest regarding Eq. (13) concerns the scaling with the
nonlinearity parameters c;, k>. The bias term grows proportional to the size of the nonlinearity squared, i.e.
ka%, c3. Thus, for linear increases in the nonlinearity strength, quadratic increases in the bias are expected.
Additionally, it is evident that the bias also scales as 1/M?, thus a linear increase in frequency resolution
provides a large reduction in bias. However, as will be shown next, for a consistent estimate of the auto-
bispectral density there exists a rather severe constraint on allowable M.

The variance associated with this estimate has already been derived [17,18]. For non-overlapping data
segments and no windowing the cited works have shown that both the real and imaginary parts of B(w, w,)
are asymptotically Gaussian distributed with common variance given by

1M2A
2 2 2 Ealats
o = O-Re _O-Im 2 N

for all non-diagonal frequency pairs (w; # w,) while the variance is doubled (6> — 2¢2) for frequencies on the
diagonal (w; = wy) [18]. In the absence of any bias, the means of these distributions are given by
E[Re{é(w],wz)}] = Re{B(w;,w;)} and E[Im{é(a)l,wz)}] = Im{B(w,, w,)}, respectively, for which we have
analytical expressions. From Eq. (14) it is seen that for a consistent estimate the number of data points used in
each segment must fulfill M <N'/?. Using windowed, overlapping segments can help ease this constraint but
the scaling of M with N remains. As with the estimation of power spectra there is clearly a trade-off between
bias and variance. It should be mentioned that the auto-spectral density S,,(w) used in Eq. (14) contains an
additional term due to the nonlinearity. The full expression, assuming a second-order Volterra model with an
input spectrum S, (w) = P, was found to be

yy(wl)Syy(WZ)Syy(wl + ws) (14)

[e¢]

&ﬂ@=Pm«mﬁ+y{/|Hmmw—wmwwL (1)

This expression was also simplified via Cauchy integration and is given by
Sy(@) = PIH (o)
n 27IP2{[w Aot + (=3d0! — 6ckrw? + k )a)2 + dwi(cr0? + kz)z]m2 + (i’ + 4k§)}
mw2ey(m2w? + A[mA(w? — 402)* + 4w}

x |Hi(w). (16)

The second term of Eq. (16) is higher-order O(P?) and therefore does not contribute significantly to the auto-
bispectral density variance. It is included here for completeness. The detector used in this work is based on the
magnitude of the auto-bispectral density squared, i.e. |B(w1,®;)> = Re[B(wy, ) + Im[B(w, w,)]>. The
distribution for the sum of the squares of two Gaussian random variables with the same variance, but different
means can be shown to be non-central, y> with two statistical degrees-of-freedom and is given by [19]

pls) =3 P (Vs), (17)

where s = |1§(w1,w2)|2/02, /.= (|B(wy,)|> — b)/a? is the non-centrality parameter and I, is the modified
Bessel function of the first kind.
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In the case of no nonlinearity (4 = 0) the Bessel function evaluates to unity and Eq. (17) reduces to the
central »? distribution with two degrees-of-freedom, i.e. the null distribution. The alternative is that there is a
nonlinearity resulting in a non-zero B(w;, ;) for which an analytical solution is known from the previous
section. With both the null and the alternative distributions a complete accounting of the Type-I and Type-II
errors is possible. In the next section, some results are presented showing the performance of the auto-
bispectral density-based detector using the direct method of estimation. The detection of nonlinearity for both
the damping (¢, #0) and stiffness (k; #0) terms is considered.

4. Detector performance

Detector performance will be quantified using ROC curves [19]. In problems of detection, the ROC curve
provides a convenient means of displaying both Type-I and Type-II errors. The practitioner simply plots the
probability of detection (POD, or 1.0-Type-II error) vs. the probability of false alarm (PFA) as the detection
threshold is varied. As the threshold is raised the Type-I error is decreased, however this will typically cause a
reduction in the POD. A low detection threshold gives a high POD but results in greater numbers of false
positives. The ideal detector, of course, is one that minimizes both Type-I and Type-II error, i.e. maintains a
high POD for a low PFA. The decision as to whether a given detector is implemented depends on the costs
associated with Type-I and Type-II error. Different applications will undoubtedly have different requirements
in this respect. Without knowledge of these costs the best that can be done is to display the detection
probabilities for which the ROC curve is an appropriate tool.

The system given by Eq. (7) was integrated using the Euler—-Maruyama scheme. This approach is
appropriate for stochastic differential equations and will preserve the correct output variance [10].
The parameters for the linear system were fixed to the values m = 1.0 [kg], k; = 10 [N/m], ¢ =
3.0 [Ns/m] with a sampling interval of 4, =0.01s. The nonlinear system parameters, ¢, [Ns?>/m’] and
ky [N/m?] were varied in order to understand their effects on the system response. For the auto-bispectral
density estimates the time series length was fixed to N = 32, 768 points while the window size was chosen to be
M = 128.

Fig. 2 shows both theoretical and estimated magnitude bispectral densities obtained for both stiffness (top
row) and damping (bottom row) nonlinearities. The presence of the nonlinearity results in the peak observed
at the system natural frequency. In the absence of the nonlinearity this peak disappears.

The detection problem involves discerning the Type-I and Type-1I error associated with declaring a peak
present. The magnitude auto-bispectral density peaks of Fig. 2 are clearly visible thus a POD of nearly unity
would be expected for nearly zero PFA. However, as the degree of nonlinearity decreases it becomes more
difficult to distinguish these peaks from the fluctuations present in the estimate. As was stated earlier, in this
work the uncertainty is simply given by the error in the integration routine (not accounted for in the theory but
assumed negligible) and the estimation error (which is accounted for in the theory).

The goal of this section is to explore the limitations in detecting both stiffness and damping nonlinearities.
To this end the expected distributions for the magnitude auto-bispectral density peak height as a function of
both ¢y, k, was analytically obtained. The distributions were also obtained numerically by simulating 40
realizations of the random process described by Eq. (7). A bispectral density estimate was obtained for each
realization and both the real and imaginary components recorded at the peak frequency along with the
magnitude bispectral density peak height. The variance for both real and imaginary components was then

estimated and the resulting values averaged to give 62. The mean estimated peak value |B(w, w>)|> (which, of
course, includes the bias term b), along with 6> was then used to estimate the distributions given by Eq. (17).
Results were obtained under the null hypothesis (k, = ¢; = 0) and for varying values of the two nonlinearity
parameters.

Sample results are shown in Fig. 3 for the single degree-of-freedom system with a stiffness nonlinearity.
Plotted are the distributions of the estimated magnitude auto-bispectral density (normalized) at the peak
frequency under the null hypothesis (no nonlinearity) and the alternative (nonlinearity present,
ky = 10000 N/m?). These results are given for both theory (Fig. 3a) and estimate (Fig. 3b). Results show
good agreement between observed and predicted values. Fig. 3¢ compares both the theoretical and observed
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Fig. 3. (a) Peak distributions obtained from theory and (b) those estimated from simulation. The solid line in both (a) and (b) represents
the situation where no nonlinearity is present while the dashed line corresponds to a nonlinear stiffness value of k, = 10,000 N/m? and no
nonlinear damping term (¢; = 0 N's?>/m?). The ROC curves associated with theory (solid line) and estimate (diamonds) are shown in (c).
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Fig. 4. (a) Peak distributions obtained from theory and (b) those estimated from simulation. The solid line in both (a) and (b) represents
the situation where no nonlinearity is present while the dashed line corresponds to a nonlinear damping value of ¢; = 10N s?>/m? and no
nonlinear stiffness term (k, = 0 N/m?). The ROC curves associated with theory (solid line) and estimate (diamonds) are shown in (c).

detector performance in the form of ROC curves. The agreement in the estimated and predicted distributions
translates directly into close agreement in the estimated and predicted ROC curves.

The results associated with detecting nonlinear damping are shown in Fig. 4. Again the theory is still able to
make good predictions regarding what levels of nonlinearity one can expect to detect and with what
probability. Both Type-I and Type-II error are correctly identified.

Finally, the complete set of detection results for both stiffness and damping nonlinearities are shown. Figs. 5
and 6 show the family of ROC curves obtained for varying values of the nonlinearity parameters. For Fig. 5
the nonlinear damping term was set equal to zero (c; = 0) while the nonlinear stiffness was allowed to vary
from 0 to 20,000 N/m? in increments of 1000 N/m?. Conversely, in Fig. 6 the stiffness was zero (k, = 0) while
the nonlinear damping coefficient was varied from 0 to 20 N's?/m? in increments of 1 N's>/m?. In both cases
good agreement between estimated and theoretically predicted ROC curves is observed. In the case of varying
k>, both theory and simulation predict that the smallest nonlinearity for which one can obtain 95% POD for
5% PFA is ~13,000 N/m? (specifically 13,470 N/m?). Similarly, it can be seen from theory that a damping
value of ¢; = 13.17 N s?/m? allows 95% POD for 5% PFA. Nearly the exact same Type-I and Type-II error
were obtained in simulation for this level of damping. It is also important to keep in mind that these results are
dependent on the excitation level, P. These results were obtained for P = 0.01 [N? /Hz]. Larger P values will
result in being able to detect smaller values of both k;, c;. However, it should be mentioned that if both the
nonlinearity and excitation levels become large, the two term Volterra model given here may break down and
higher-order terms may need to be considered. Again, for detection applications the interest is in small levels
of nonlinearity for which the two-term model is appropriate. The model presented here, combined with the
statistical properties of the estimates, makes it easy to explore the influence of excitation.
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Fig. 6. Comparison of ROC curves generated from theory (a) and simulation (b) as a function of the nonlinearity parameter ¢, N s?/m?
(ka = ON/m?).

It should also be pointed out that for very low levels of nonlinearity the ROC curves associated with the
simulation appear to give higher detection probabilities than those obtained from theory. The reason for this is
an inability to generate a truly Gaussian time series in practice. In reality there is always some skewness to the
driving time series. This skewness results in peaks that, although small, can be detected, even under the null
hypothesis of a linear structure. Thus, for small levels of nonlinearity the estimated ROC curves do not exhibit
the smooth transition toward the diagonal line predicted by theory for ¢; = k, = 0.

5. Conclusions

This work has considered both Type-I and Type-II error associated with using the auto-bispectral density,
estimated via the direct method, to detect the presence of quadratic nonlinearities in both stiffness and
damping. First, an analytical solution for the auto-bispectral density was summarized. Next, an expression for
the bias of the estimator was derived. This expression, combined with previously derived expressions for the
variance of the estimator, was then used to derive the distributions for the magnitude bispectral density peak
height. These distributions allowed for both Type-I and Type-II error to be solved for analytically for the
auto-bispectral density-based detector. Receiver operating characteristic (ROC) curves were then used to
display these errors in detecting both damping and stiffness nonlinearities. Results were compared to those
obtained via numerical simulation and showed good agreement. These results focus only on the uncertainty
due to errors in the estimation. In this sense the ROC curves presented show the fundamental limits of auto-
bispectral density-based detector performance for single degree-of-freedom systems with quadratic
nonlinearities using the direct method of estimation.
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