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Abstract

Higher-order spectra appear often in the analysis and identification of nonlinear systems. The auto-bispectral density is

one example of a higher-order spectrum and may be used in the analysis of stationary structural response data to detect the

presence of certain types of structural nonlinearities. In this work a closed-form expression for the auto-bispectral density,

derived previously by the authors, is used to find the bispectral frequency most sensitive to the nonlinearity. The properties

of nonlinearity detectors based on estimates of the magnitude of the auto-bispectral density at this frequency are then

explored. Estimates of the auto-bispectral density are obtained using the direct method based on the discrete Fourier

transform. The bias associated with this estimator is derived here and combined with previously derived expressions for the

estimator variance to give both Type-I and Type-II errors for the detector. Detector performance is quantified using a

receiver operating characteristic (ROC) curve illustrating the trade-off between false positives (Type-I error) and power of

detection (1.0-Type-II error). Theoretically derived ROC curves are compared to those obtained via numerical simulation

and show excellent agreement. Results are presented for different levels of nonlinearity in both the stiffness and damping

terms for a spring–mass system. Possible consequences are discussed with regard to the detection of damage-induced

nonlinearities in structures.

Published by Elsevier Ltd.
1. Introduction

This work is concerned with detecting the presence of certain kinds of nonlinearity in structural systems.
Specifically, nonlinearity detectors based on estimates of the auto-bispectral density obtained from time series
of structural response data are considered. The auto-bispectral density for a stationary system response is
defined as the double Fourier transform (FT) of the third moment about the mean [1], i.e.

Bðo1;o2Þ ¼

Z 1
�1

Z 1
�1

E½ðyðtÞ � ȳÞðyðtþ t1Þ � ȳÞðyðtþ t2Þ � ȳÞ�e�iðo1t1þo2t2Þ dt1 dt2, (1)

where yðtÞ is the signal and ȳ is the signal mean. The distinction is sometimes not made between the terms
‘‘auto-bispectrum’’ and ‘‘auto-bispectral density’’. Eq. (1) is in fact a density with units ½y�3=Hz2 and will be
ee front matter Published by Elsevier Ltd.
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referred to as such throughout. The expected value under the integral will only be a function of the delays t1; t2
due to the assumption of ergodicity. For a linear Gaussian-excited structure this quantity is zero for all
frequency pairs o1;o2. This can be seen as follows. Assume a linear, time invariant system driven with zero-
mean Gaussian noise xðtÞ. Its input–output relationship is governed by the convolution

yðtÞ ¼

Z 1
�1

hðtÞxðt� tÞdt (2)

and the statistical moments of the output are given by E½yðtÞ� ¼ E½xðtÞ� ¼ 0 followed by

E½yðtÞyðtþ t1Þ� ¼
Z 1
�1

Z 1
�1

hðt� y1Þhðtþ t1 � y2ÞE½xðy1Þxðy2Þ�dy1 dy2,

E½yðtÞyðtþ t1Þyðtþ t2Þ� ¼
Z 1
�1

Z 1
�1

Z 1
�1

hðt� y1Þhðtþ t1 � y2Þhðtþ t2 � y3Þ

� E½xðy1Þxðy2Þxðy3Þ�dy1 dy2 dy3

..

.
. ð3Þ

Because the excitation is Gaussian all odd-order moments vanish, e.g. E½xðy1Þxðy2Þxðy3Þ� ¼ 0, while the even
order expectations become functions of the autocovariance E½xðy1Þxðy2Þ� [2]. As a consequence the statistical
properties of the output for a linear, Gaussian driven system can be described entirely by E½yðtÞyðtþ t1Þ� (e.g.
E½yðtÞyðtþ t1Þyðtþ t2Þ� ¼ 0). However, if quadratic nonlinearities are present, Eq. (2) does not hold and there
will exist non-zero components in the third moment, i.e. E½yðtÞyðtþ t1Þyðtþ t2Þ�a0. The presence of this
expected value can therefore be used to infer the presence of the nonlinearity. The existence of other higher-
order moments can also be used to detect nonlinearity for Gaussian driven linear structures. The frequency
domain representations of these moments are collectively the higher-order spectra. The first of these, the auto-
bispectral density has already been given by Eq. (1) and is the focus of this work. Even if the excitation, xðtÞ, is
non-Gaussian a normalized form of Eq. (1), the bicoherence, can be used to detect the presence of a
nonlinearity [3]. In this case the practitioner is trying to detect deviations from a constant bicoherence as
opposed to non-zero values as is done with the auto-bispectral density.

The magnitude of the auto-bispectrum has seen use as a nonlinearity detector in a number of applications.
Worden and Tomlinson [4] used estimates of the auto-bispectrum to detect different types of nonlinearity in a
spring–mass system. Messina and Vittal [5] used estimates of the auto-bispectrum to detect nonlinear mode
interaction in a power system. In some cases structural damage will result in the presence of a nonlinearity.
Rivola and White [6] used the normalized auto-bispectrum to detect cracks in an experimental beam while
Zhang et al. [7] focused on detecting gear faults, also using the auto-bispectrum. Both the auto-bispectrum and
auto-trispectrum were used by Teng and Brandon [8] in detecting the deterioration of jointed structures. One
question that was not addressed in the above works was that of significance. That is to say, what are the Type-
I and Type-II errors associated with a bispectral-based detector? In detecting the presence of non-Gaussian
signals in noise, Hinich and Wilson [9] specified both Type-I and Type-II error as a function of both signal-to-
noise-ratio (SNR) and the degree of non-normality (skewness). Type-I error was also discussed in the work of
Richardson and Hodgkiss [1] in detecting nonlinearity in underwater acoustic data. To date no such analysis
has been performed with regard to detecting nonlinearity in structures. However, this information is essential
in understanding the efficacy of bispectrum-based detectors in applications such as damage detection
mentioned above.

This work is focused on determining the Type-I and Type-II error for a detector of structural nonlinearity
based on estimates of the auto-bispectral density. Determination of these errors first requires an analytical
solution for the auto-bispectral density as a function of the nonlinearity parameters. Such a solution was
previously derived by the authors in Ref. [10] and is summarized in the next section. This solution is also used
to determine the frequency pair ðo1;o2Þ most sensitive to the presence of the nonlinearity. The bias associated
with the direct method of estimating the auto-bispectral density is then derived. This expression is used in
conjunction with previously established expressions for the variance of the estimator to derive the
distributions for the magnitude auto-bispectral density peak heights under the null (linear) and alternative
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(nonlinearity present) hypothesis. Probability of detection (1.0-Type-II error) and probability of false
alarm (Type-I error) can then be obtained analytically for a given nonlinearity strength. These results
are displayed as receiver operating characteristic (ROC) curves and are compared to those obtained
by simulating the nonlinear response of a spring–mass system and subsequently estimating the auto-bispectral
density.

2. Analytical auto-bispectral density via Volterra series

This section briefly reviews the development of an analytical solution for the auto-bispectral density and
shows how this solution can be used to obtain the most sensitive bi-frequency for the purposes of nonlinearity
detection. In order to describe the output response analytically a two-term Volterra series model is used [2,11]
in which the solution is approximated as

yðtÞ ¼ y1ðtÞ þ y2ðtÞ

¼

Z 1
�1

h1ðtÞxðt� tÞdtþ
Z 1
�1

Z 1
�1

h2ðt1; t2Þxðt� t1Þxðt� t2Þdt1 dt2, ð4Þ

where h1; h2 are the linear and quadratic Volterra kernels, respectively. This approach is valid for modeling a
broad class of nonlinear systems (see Ref. [2]). While more terms could have been considered in the Volterra
expansion (e.g. y3ðtÞ, y4ðtÞ, etc.), the focus of this work is on establishing detection limits (i.e. relatively low
levels of nonlinearity are considered). For this application the two term model is sufficient. Consider the
excitation to be IID Gaussian noise with zero mean and unit standard deviation, i.e. xðtÞ�Nð0; 1Þ. In this case
the mean of the system response is given by

ȳ ¼ ȳ1 þ ȳ2 ¼ 0þ

Z 1
�1

Z 1
�1

h2ðt1; t2ÞE½xðt� t1Þxðt� t2Þ�dt1 dt2. (5)

Substituting Eqs. (4) and (5) into Eq. (1) and simplifying yields the expression [10]

Bðo1;o2Þ

¼
8

2p

Z 1
�1

H2ðo1 þ x;o2 � xÞH2ð�o1 � x; xÞH2ð�o2 þ x;�xÞSxxðxÞSxxðo1 þ xÞSxxðo2 � xÞdx

þ 2H2ð�o1 � o2;o2ÞH1ðo1 þ o2ÞH1ð�o2ÞSxxðo1 þ o2ÞSxxðo2Þ

þ 2H2ð�o1 � o2;o1ÞH1ðo1 þ o2ÞH1ð�o1ÞSxxðo1 þ o2ÞSxxðo1Þ

þ 2H2ðo1;o2ÞH1ð�o1ÞH1ð�o2ÞSxxðo1ÞSxxðo2Þ, ð6Þ

where SxxðoÞ ¼
R1
�1

E½xðtÞxðt� t1Þ�e�iot1 dt1 is the autospectral density function. In this work the IID

Gaussian assumption on xðtÞ results in SxxðoÞ ¼ const: ¼ P. Expressions for the frequency domain kernels,

H1ðoÞ ¼
R1
�1

h1ðt1Þe�iot1 dt1 and H2ðo1;o2Þ ¼
R1
�1

R1
�1

h2ðt1; t2Þe�iðo1t1þo2t2Þ dt1 dt2, may be obtained via the

harmonic probing technique described in detail in Refs. [11,12]. These kernels will be dependent on the specific
system under study.

Define the structural model of interest to be a single degree-of-freedom system governed by

m €yþ c1 _yþ c2 _y
2 þ k1yþ k2y2 ¼ AxðtÞ, (7)

where m ½kg� is the mass, c1 ½Ns=m� and k1 ½N=m� the linear damping and stiffness coefficients, c2 ½Ns2=m2�

and k2 ½N=m2� the nonlinear damping and stiffness coefficients, and A ½N� the amplitude of excitation. Using
the acceleration €yðtÞ as the response of interest, harmonic probing yields

H1ðoÞ ¼
�o2

k1 þ ic1o�mo2

H2ðo1;o2Þ ¼
1

o2
1o

2
2

ð�k2 þ c2o1o2ÞH1ðo1ÞH1ðo2ÞH1ðo1 þ o2Þ (8)
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as the first and second-order Volterra kernels. These expressions may be substituted into Eq. (6) along with

SxxðoÞ ¼ P½N2=Hz� to give a closed-form solution for the auto-bispectral density in terms of the physical
parameters m; k1; k2; c1; c2. The integral term of Eq. (6) may be obtained via Cauchy integration (see for
example Ref. [13]). For a Gaussian excited, linear structure H2ðo1;o2Þ ¼ 0 (k2 ¼ c2 ¼ 0) and the auto-
bispectral density is identically zero over all frequency pairs. For the system studied here, the presence of a
nonlinearity in either the damping or stiffness terms will lead to non-zero values resulting in ‘‘peaks’’ at both

the natural frequency on ¼
ffiffiffiffiffiffiffiffiffiffiffi
k1=m

p
and the bi-frequency o1 þ o2 ¼ on. This can be seen simply by

considering the location of the poles associated with H2ðo1;o2Þ (see Fig. 1). Differentiating Eq. (6) with
respect to k2 or c2 shows that the peak location o1 ¼ o2 ¼ on is clearly the most sensitive to the presence of
both stiffness and damping nonlinearities. The analytical expression is also needed in order to derive the
distributions for the magnitude auto-bispectral density peak heights. Detecting the presence of these
nonlinearities therefore requires the practitioner to monitor this frequency pair in the o1;o2 plane and look
for significant non-zero values. In the following sections we discuss the estimation problem and the problem of
determining the significance of the magnitude auto-bispectral density peak heights.

3. Estimating the auto-bispectral density

The estimation of Bðo1;o2Þ is made with finite data and will therefore be subject to both bias and variance.
This results in non-zero values of the bispectrum even when no nonlinearity is present. Ideally, the estimator
used will be unbiased and consistent, that is to say both the bias and variance will go to zero as the number of
data points become large. The real question for detection is ‘‘what is the smallest nonlinearity that can be
detected with a given Type-I, Type-II error given the uncertainty in the estimate?’’. Of course, other noise
sources will be present in practice and will degrade the detection performance further. By considering only the
uncertainty in the estimate, the results presented show the fundamental limitations of this detection scheme.

Two main approaches are used in bispectral density estimation. The first, referred to as the indirect method,
involves averaging over K data records to approximate the expected value E½ðyðtÞ � ȳÞðyðt� t1Þ � ȳÞðyðt� t2Þ �
ȳÞ� and then taking the double FT. Details of this approach are discussed in Ref. [14]. The second, direct method

forms the estimate as an average product of FTs. An observed time series sampled with frequency f s ¼ 1=Dt is
denoted yðnÞ; n ¼ 0 � � �N � 1. These data are divided into K segments of length M (N ¼ KM for non-overlapping
segments) such that the kth segment is ykðmÞ ¼ yðmþ kMÞ, m ¼ 0 � � �M � 1, k ¼ 0 � � �K � 1. Each segment may
then be smoothed by multiplying by an appropriate windowing function wðmÞ. The FT of the windowed data at
discrete frequencies f is approximated by Y kðf Þ ¼ Dt

P
mwðmÞykðmÞe

�i2pfm=M , f ¼ 0; . . . ;M � 1. Using this
notation, the final estimate for the auto-bispectral density is obtained by averaging over the total time KMDt to give

B̂ðf ; gÞ ¼
D2

t

KM

XK�1
k¼0

Y kðf ÞY kðgÞY
�
kðf þ gÞ (9)
Fig. 1. Magnitude of H2ðo1;o2Þ (dB scale) showing the location of the poles and the ridge o1 þo2 ¼ on.
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for discrete frequencies f ; g. Obtaining the estimate at frequencies ðo1;o2Þ simply requires the scaling
o ¼ 2p½ð2f �MÞ=2MDt�, f ¼ 0 � � �M � 1 resulting in the estimate B̂ðo1;o2Þ.

As the number of data increases toward infinity, the bias in the estimate approaches zero, thus Eq. (9) is an
unbiased estimate [14]. The bias in bispectral estimates is analogous to that found in power spectrum
estimation and scales as the second derivative of the auto-bispectral density with respect to the frequencies
[15]. For lightly damped systems, such as the mechanical system explored here, there will tend to be sharp
peaks such as the one displayed in Fig. 2 resulting in a potentially large bias. Accurate resolution of sharp
peaks requires a high-frequency resolution. This means that the number of points in the estimation segments
M must be large. An estimate for the bias is derived here in analogous fashion to those derived in power
spectral density estimation [16]. The expected value for the estimate may be written as the value of the
magnitude auto-bispectral density averaged over each frequency bin, i.e.

E½jB̂ðf 1; f 2Þj
2� ¼

1

ð2Df Þ
2

Z f 2þDf

f 2�Df

Z f 1þDf

f 1�Df

jB̂ðx1; x2Þj
2 dx1 dx2. (10)

where Df ¼ 1=ð2MDtÞ is the half-frequency bin width. For small Df , the magnitude auto-bispectral density
may be expanded as a Taylor series up to second order giving

E½jB̂ðf 1; f 2Þj
2� �

1

ð2Df Þ
2

Z f 2þDf

f 2�Df

Z f 1þDf

f 1�Df

jB̂ðf 1; f 2Þj
2 þ ðx1 � f 1Þ

q
qf 1

jB̂ðf 1; f 2Þj
2

þ ðx2 � f 2Þ
q
qf 2

jB̂ðf 1; f 2Þj
2 þ ðx1 � f 1Þðx2 � f 2Þ

q2

qf 1qf 2

jB̂ðf 1; f 2Þj
2

þ
1

2
ðx1 � f 1Þ

2 q2

qf 2
1

jB̂ðf 1; f 2Þj
2 þ

1

2
ðx2 � f 2Þ

2 q2

qf 2
2

jB̂ðf 1; f 2Þj
2 dx1 dx2. ð11Þ
Fig. 2. Magnitude auto-bispectral density obtained from theory (a,c) and from the direct estimation procedure (b,d). Results are

plotted for a stiffness nonlinearity of k2 ¼ 105 N=m2, with c2 ¼ 0N s2=m2 (a,b) and damping nonlinearity of c2 ¼ 40N s2=m2 with

k2 ¼ 0N=m2 (c,d).
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The two terms involving the first derivative of the auto-bispectral density vanish as does the mixed partial
derivative owing to the fact that

R fþDf

f�Df
ðx� f Þdx ¼ 0. Carrying out the integration for the remaining terms

results in the expression

E½jB̂ðf 1; f 2Þj
2� � jBðf 1; f 2Þj

2 þ
D2

f

6

q2

qf 2
1

jBðf 1; f 2Þj
2 þ

D2
f

6

q2

qf 2
2

jBðf 1; f 2Þj
2 (12)

thus the bias is simply

b ¼
D2

f

6

q2

qf 2
1

jBðf 1; f 2Þj
2 þ

D2
f

6

q2

qf 2
2

jBðf 1; f 2Þj
2. (13)

Using the closed-form expression for the auto-bispectral density (Eq. (6)) in combination with Eq. (13) an
expression for the bias is obtained. One point of interest regarding Eq. (13) concerns the scaling with the
nonlinearity parameters c2; k2. The bias term grows proportional to the size of the nonlinearity squared, i.e.
b�k2

2; c
2
2. Thus, for linear increases in the nonlinearity strength, quadratic increases in the bias are expected.

Additionally, it is evident that the bias also scales as 1=M2, thus a linear increase in frequency resolution
provides a large reduction in bias. However, as will be shown next, for a consistent estimate of the auto-
bispectral density there exists a rather severe constraint on allowable M.

The variance associated with this estimate has already been derived [17,18]. For non-overlapping data
segments and no windowing the cited works have shown that both the real and imaginary parts of B̂ðo1;o2Þ

are asymptotically Gaussian distributed with common variance given by

s2 ¼ s2Re ¼ s2Im ¼
1

2

M2Dt

N
Syyðo1ÞSyyðo2ÞSyyðo1 þ o2Þ (14)

for all non-diagonal frequency pairs (o1ao2) while the variance is doubled (s2 ! 2s2) for frequencies on the
diagonal (o1 ¼ o2) [18]. In the absence of any bias, the means of these distributions are given by
E½RefB̂ðo1;o2Þg� ¼ RefBðo1;o2Þg and E½ImfB̂ðo1;o2Þg� ¼ ImfBðo1;o2Þg, respectively, for which we have
analytical expressions. From Eq. (14) it is seen that for a consistent estimate the number of data points used in
each segment must fulfill MoN1=2. Using windowed, overlapping segments can help ease this constraint but
the scaling of M with N remains. As with the estimation of power spectra there is clearly a trade-off between
bias and variance. It should be mentioned that the auto-spectral density SyyðoÞ used in Eq. (14) contains an
additional term due to the nonlinearity. The full expression, assuming a second-order Volterra model with an
input spectrum SxxðoÞ ¼ P, was found to be

SyyðoÞ ¼ PjH1ðoÞj2 þ 2P2

Z 1
�1

jH2ðo1;o� o1Þj
2 do1. (15)

This expression was also simplified via Cauchy integration and is given by

SyyðoÞ ¼ PjH1ðoÞj2

þ
2pP2f½o2

nc22o
4 þ ð�3c22o

4
n � 6c2k2o2

n þ k2
2Þo

2 þ 4o2
nðc2o

2
n þ k2Þ

2
�m2 þ c21ðo

2
no

2c22 þ 4k2
2Þg

mo2
nc1ðm2o2 þ c21Þ½m

2ðo2 � 4o2
nÞ

2
þ 4o2c21�

� jH1ðoÞj2. ð16Þ

The second term of Eq. (16) is higher-order OðP2Þ and therefore does not contribute significantly to the auto-
bispectral density variance. It is included here for completeness. The detector used in this work is based on the
magnitude of the auto-bispectral density squared, i.e. jBðo1;o2Þj

2 ¼ Re½Bðo1;o2Þ�
2 þ Im½Bðo1;o2Þ�

2. The
distribution for the sum of the squares of two Gaussian random variables with the same variance, but different
means can be shown to be non-central, w2 with two statistical degrees-of-freedom and is given by [19]

pðsÞ ¼ 1
2
e�ðsþlÞ=2I0ð

ffiffiffiffiffi
sl
p
Þ, (17)

where s ¼ jB̂ðo1;o2Þj
2=s2, l ¼ ðjBðo1;o2Þj

2 � bÞ=s2 is the non-centrality parameter and I0 is the modified
Bessel function of the first kind.
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In the case of no nonlinearity (l ¼ 0) the Bessel function evaluates to unity and Eq. (17) reduces to the
central w2 distribution with two degrees-of-freedom, i.e. the null distribution. The alternative is that there is a
nonlinearity resulting in a non-zero Bðo1;o2Þ for which an analytical solution is known from the previous
section. With both the null and the alternative distributions a complete accounting of the Type-I and Type-II
errors is possible. In the next section, some results are presented showing the performance of the auto-
bispectral density-based detector using the direct method of estimation. The detection of nonlinearity for both
the damping (c2a0) and stiffness (k2a0) terms is considered.
4. Detector performance

Detector performance will be quantified using ROC curves [19]. In problems of detection, the ROC curve
provides a convenient means of displaying both Type-I and Type-II errors. The practitioner simply plots the
probability of detection (POD, or 1.0-Type-II error) vs. the probability of false alarm (PFA) as the detection
threshold is varied. As the threshold is raised the Type-I error is decreased, however this will typically cause a
reduction in the POD. A low detection threshold gives a high POD but results in greater numbers of false
positives. The ideal detector, of course, is one that minimizes both Type-I and Type-II error, i.e. maintains a
high POD for a low PFA. The decision as to whether a given detector is implemented depends on the costs
associated with Type-I and Type-II error. Different applications will undoubtedly have different requirements
in this respect. Without knowledge of these costs the best that can be done is to display the detection
probabilities for which the ROC curve is an appropriate tool.

The system given by Eq. (7) was integrated using the Euler–Maruyama scheme. This approach is
appropriate for stochastic differential equations and will preserve the correct output variance [10].
The parameters for the linear system were fixed to the values m ¼ 1:0 ½kg�, k1 ¼ 103 ½N=m�, c1 ¼

3:0 ½Ns=m� with a sampling interval of Dt ¼ 0:01 s. The nonlinear system parameters, c2 ½Ns2=m2� and
k2 ½N=m2� were varied in order to understand their effects on the system response. For the auto-bispectral
density estimates the time series length was fixed to N ¼ 32; 768 points while the window size was chosen to be
M ¼ 128.

Fig. 2 shows both theoretical and estimated magnitude bispectral densities obtained for both stiffness (top
row) and damping (bottom row) nonlinearities. The presence of the nonlinearity results in the peak observed
at the system natural frequency. In the absence of the nonlinearity this peak disappears.

The detection problem involves discerning the Type-I and Type-II error associated with declaring a peak
present. The magnitude auto-bispectral density peaks of Fig. 2 are clearly visible thus a POD of nearly unity
would be expected for nearly zero PFA. However, as the degree of nonlinearity decreases it becomes more
difficult to distinguish these peaks from the fluctuations present in the estimate. As was stated earlier, in this
work the uncertainty is simply given by the error in the integration routine (not accounted for in the theory but
assumed negligible) and the estimation error (which is accounted for in the theory).

The goal of this section is to explore the limitations in detecting both stiffness and damping nonlinearities.
To this end the expected distributions for the magnitude auto-bispectral density peak height as a function of
both c2; k2 was analytically obtained. The distributions were also obtained numerically by simulating 40
realizations of the random process described by Eq. (7). A bispectral density estimate was obtained for each
realization and both the real and imaginary components recorded at the peak frequency along with the
magnitude bispectral density peak height. The variance for both real and imaginary components was then

estimated and the resulting values averaged to give ŝ2. The mean estimated peak value j ^̄Bðo1;o2Þj
2 (which, of

course, includes the bias term b), along with ŝ2 was then used to estimate the distributions given by Eq. (17).
Results were obtained under the null hypothesis (k2 ¼ c2 ¼ 0) and for varying values of the two nonlinearity
parameters.

Sample results are shown in Fig. 3 for the single degree-of-freedom system with a stiffness nonlinearity.
Plotted are the distributions of the estimated magnitude auto-bispectral density (normalized) at the peak
frequency under the null hypothesis (no nonlinearity) and the alternative (nonlinearity present,
k2 ¼ 10000N=m2). These results are given for both theory (Fig. 3a) and estimate (Fig. 3b). Results show
good agreement between observed and predicted values. Fig. 3c compares both the theoretical and observed
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Fig. 3. (a) Peak distributions obtained from theory and (b) those estimated from simulation. The solid line in both (a) and (b) represents

the situation where no nonlinearity is present while the dashed line corresponds to a nonlinear stiffness value of k2 ¼ 10; 000N=m2 and no

nonlinear damping term (c2 ¼ 0N s2=m2). The ROC curves associated with theory (solid line) and estimate (diamonds) are shown in (c).

Fig. 4. (a) Peak distributions obtained from theory and (b) those estimated from simulation. The solid line in both (a) and (b) represents

the situation where no nonlinearity is present while the dashed line corresponds to a nonlinear damping value of c2 ¼ 10N s2=m2 and no

nonlinear stiffness term (k2 ¼ 0N=m2). The ROC curves associated with theory (solid line) and estimate (diamonds) are shown in (c).
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detector performance in the form of ROC curves. The agreement in the estimated and predicted distributions
translates directly into close agreement in the estimated and predicted ROC curves.

The results associated with detecting nonlinear damping are shown in Fig. 4. Again the theory is still able to
make good predictions regarding what levels of nonlinearity one can expect to detect and with what
probability. Both Type-I and Type-II error are correctly identified.

Finally, the complete set of detection results for both stiffness and damping nonlinearities are shown. Figs. 5
and 6 show the family of ROC curves obtained for varying values of the nonlinearity parameters. For Fig. 5
the nonlinear damping term was set equal to zero (c2 ¼ 0) while the nonlinear stiffness was allowed to vary
from 0 to 20; 000N=m2 in increments of 1000N=m2. Conversely, in Fig. 6 the stiffness was zero (k2 ¼ 0) while
the nonlinear damping coefficient was varied from 0 to 20N s2=m2 in increments of 1N s2=m2. In both cases
good agreement between estimated and theoretically predicted ROC curves is observed. In the case of varying
k2, both theory and simulation predict that the smallest nonlinearity for which one can obtain 95% POD for
5% PFA is �13; 000N=m2 (specifically 13; 470N=m2). Similarly, it can be seen from theory that a damping
value of c2 ¼ 13:17N s2=m2 allows 95% POD for 5% PFA. Nearly the exact same Type-I and Type-II error
were obtained in simulation for this level of damping. It is also important to keep in mind that these results are
dependent on the excitation level, P. These results were obtained for P ¼ 0:01 ½N2=Hz�. Larger P values will
result in being able to detect smaller values of both k2; c2. However, it should be mentioned that if both the
nonlinearity and excitation levels become large, the two term Volterra model given here may break down and
higher-order terms may need to be considered. Again, for detection applications the interest is in small levels
of nonlinearity for which the two-term model is appropriate. The model presented here, combined with the
statistical properties of the estimates, makes it easy to explore the influence of excitation.
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Fig. 5. Comparison of ROC curves generated from theory (a) and simulation (b) as a function of the nonlinearity parameter k2 N=m2

ðc2 ¼ 0N s2=m2Þ.

Fig. 6. Comparison of ROC curves generated from theory (a) and simulation (b) as a function of the nonlinearity parameter c2 N s2=m2

(k2 ¼ 0N=m2Þ.
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It should also be pointed out that for very low levels of nonlinearity the ROC curves associated with the
simulation appear to give higher detection probabilities than those obtained from theory. The reason for this is
an inability to generate a truly Gaussian time series in practice. In reality there is always some skewness to the
driving time series. This skewness results in peaks that, although small, can be detected, even under the null
hypothesis of a linear structure. Thus, for small levels of nonlinearity the estimated ROC curves do not exhibit
the smooth transition toward the diagonal line predicted by theory for c2 ¼ k2 ¼ 0.

5. Conclusions

This work has considered both Type-I and Type-II error associated with using the auto-bispectral density,
estimated via the direct method, to detect the presence of quadratic nonlinearities in both stiffness and
damping. First, an analytical solution for the auto-bispectral density was summarized. Next, an expression for
the bias of the estimator was derived. This expression, combined with previously derived expressions for the
variance of the estimator, was then used to derive the distributions for the magnitude bispectral density peak
height. These distributions allowed for both Type-I and Type-II error to be solved for analytically for the
auto-bispectral density-based detector. Receiver operating characteristic (ROC) curves were then used to
display these errors in detecting both damping and stiffness nonlinearities. Results were compared to those
obtained via numerical simulation and showed good agreement. These results focus only on the uncertainty
due to errors in the estimation. In this sense the ROC curves presented show the fundamental limits of auto-
bispectral density-based detector performance for single degree-of-freedom systems with quadratic
nonlinearities using the direct method of estimation.
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